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Rapid interstellar travel by means of spacetime wormholes is described in a way that is useful for 
teaching elementary general relativity. The description touches base with Carl Sagan’s novel 
Contact, which, unlike most science fiction novels, treats such travel in a manner that accords 
with the best 1986 knowledge of the laws of physics. Many objections are given against the use of 
black holes or Schwarzschild wormholes for rapid interstellar travel. A new class of solutions of 
the Einstein field equations is presented, which describe wormholes that, in principle, could be 
traversed by human beings. It is essential in these solutions that the wormhole possess a throat at 
which there is no horizon; and this property, together with the Einstein field equations, places an 
extreme constraint on the material that generates the wormhole’s spacetime curvature: In the 
wormhole’s throat that material must possess a radial tension r0 with the enormous magnitude 
r0~ (pressure at the center of the most massive of neutron stars) X (20 km)2/(circumference of 
throat)2. Moreover, this tension must exceed the material’s density of mass-energy, p0c2. No 
known material has this r0>p0c2 property, and such material would violate all the “energy 
conditions” that underlie some deeply cherished theorems in general relativity. However, it is not 
possible today to rule out firmly the existence of such material; and quantum field theory gives 
tantalizing hints that such material might, in fact, be possible. 

I. INTRODUCTION AND SUMMARY 

A. Black holes not usable for interstellar travel 

Science fiction stories, TV shows, and films often use 
black holes for rapid interstellar travel: Intrepid adventur- 
ers plunge into a black hole and find themselves almost 
immediately emerging at some distant location in our uni- 
verse or even in some other universe—much to the annoy- 
ance of relativity afficionados who can marshal a long list 
of objections: 

(1) A black hole horizon is the surface separating the 
interior, trapped regions of the hole (those regions that 
cannot communicate with the external universe) from the 
external universe in which we live. At the horizon of a 
black hole of mass M, tidal gravitational forces (inhomo- 
geneities of gravity) produce enormous relative accelera- 
tions between the head and feet of an adventurer of height 
L, accelerations with magnitude ~L(2GM/c3)~2~ (10 
Earth gravities) X (L /I m) X (M/104 solar masses)-2 

(see, e.g., Ref. 1, Sec. 32.6). Unless the hole is more mas- 
sive than 104 suns and thus has a horizon with circumfer- 
ence, 4irGM /c2, which is larger than 10s km, the adven- 
turer will be killed by tidal gravity before even reaching the 
horizon. A hole so massive and large will not fit into most 
science fiction scenarios. 

(2) A black hole horizon is a one-way “membrane”: 
Things can fall in, but nothing can emerge.2'1 Thus, two- 
way travel (which is often invoked) is forbidden; and even 
in one-way travel the object at the other end, from which 
the adventurer emerges, cannot be a black hole. It must be 
some other, even more bizzare object—for example, a 
white hole.3'4 

(3) All of the objects known as solutions to Einstein’s 
equations that could exist at the other end (e.g., white 
holes3,4) possess “past event horizons” or “antihorizons,” 
i.e., surfaces out of which things can emerge but down 
which nothing can go. Such antihorizons are known to be 

highly unstable against small perturbations.5 If an antihor- 
izon of mass M somehow were to form (e.g., in the big 
bang), a stray wave packet of light with arbitrarily small 
energy, falling toward it (but never able to reach it) would 
become more and more blueshifted and more and more 
energetic as it falls. By its exponentiating energy the wave 
packet would convert the antihorizon into a normal hori- 
zon in a time of (a few tens) X GM/<? ~ 1 s X (M/104 solar 
masses). This conversion, occurring within seconds after 
creation of the antihorizon, would seal off the antihorizon 
forever thereafter, preventing any adventurer from ever 
emerging through it. 

(4) Although the Kerr metric that describes rotating 
black holes possesses, in its interior, pathways to other a- 
symptotically flat regions of spacetime (“tunnels through 
hyperspace” to other “universes” or to other regions of our 
own universe),6 those tunnels almost certainly do not oc- 
cur in nature: 

(a) The proof7 that, once a newborn rotating hole set- 
tles down into a time-independent state it must have 
the Kerr form, applies only to the spacetime region at 
and outside the hole’s horizon, not to the horizon’s 
interior. The physical mechanisms that enforce the 
Kerr form (horizon as boundary condition on exter- 
nal physics; flow of gravitational radiation into hori- 
zon and off to infinity) do not operate in the hole’s 
interior. Thus there is no reason whatsoever to expect 
a stellar collapse that forms a Kerr hole to form also a 
Kerr interior with tunnels to other regions of space- 
time. 
(b) Even if Kerr tunnels were to form, they could not 
live for long: The Kerr tunnels possess “Cauchy hori- 
zons” that are known to be highly unstable against 
small perturbations8: A wave packet of light, falling 
into a Kerr black hole with interior tunnel will become 
more and more blueshifted and more and more ener- 
getic as it nears the Cauchy horizon; and the wave 
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packet’s exponentiating energy presumably will cre- 
ate exponentially growing tidal gravitational fields 
that seal off the tunnel and convert it into a physical 
singularity. (We cannot be absolutely sure that this is 
the outcome, because this instability—by contrast 
with that of white hole antihorizons—has been ana- 
lyzed only to first order in perturbation theory. How- 
ever, all the evidence from first-order analyses and all 
physical intuition built up from other studies of non- 
linearly strong gravity points toward a sealing off of 
the tunnel.) Thus it is almost certain that the interiors 
of black holes actually possess not tunnels to other 
regions of spacetime but, rather, singularities of near- 
infinitely strong tidal gravitational fields, singularities 
that would kill any human adventurer and that are 
described correctly not by general relativity but by the 
(as yet not fully understood) quantum theory of grav- 
ity.9 

(c) If Kerr tunnels were somehow to form and were 
somehow stabilized to prevent infalling fields and par- 
ticles from sealing them off, the tunnels would possess 
ring-shaped singularities. If physics were totally clas- 
sical, and if the hole were sufficiently massive and suf- 
ficiently rapidly rotating, an adventurer would be able 
to pass unscathed through the center of such a ring 
singularity. However, quantum field theory predicts 
that these singularities by breaking down the vacuum 
should spew an intense flux of high-energy particles 
into the tunnel, almost certainly irradiating and kill- 
ing any adventurer who tries to pass through and also 
almost certainly sealing off the tunnel against all pas- 
sage.10 (This objection, but only this, is avoided in a 
solution to Einstein’s equations constructed by Bar- 
deen. 11 Bardeen’s solution describes a spacetime that 
almost certainly could not occur naturally, but that 
one might imagine an advanced civilization trying to 
build. In Bardeen’s spacetime, a peculiar stress-energy 
threading the tunnels keeps them singularity-free, but 
all the other difficulties of Kerr tunnels remain.) 
(d) If somehow an adventurer were to pass unscathed 
through a Kerr tunnel and emerge into some distant 
region of our own universe, by adjusting slightly her 
trajectory through the tunnel (we adopt the spirit of 
Contact in which the protagonist and wormhole trav- 
eler is Dr. Ellie Arroway) she could emerge whenever 
she wishes: late in the evolution of the universe or, 
more interestingly, early enough to return to Earth 
and kill her own newborn mother (causality viola- 
tion).12 

These objections make it seem exceedingly unlikely that 
black holes could ever be used by people or other intelligent 
beings for interstellar travel. 

B. Schwarzschild wormholes: not traversible 

Wormholes provide an alternative conceivable method 
for rapid interstellar travel. Figure 1(a) shows, by means 
of an embedding diagram (discussed below), a wormhole 
that connects two different universes; Fig. 1(b) shows a 
wormhole connecting two distant regions of our own uni- 
verse. Both wormholes are described by the same solution 
of the Einstein field equations. Only their topologies differ, 
and the Einstein field equations do not constrain the topol- 
ogy of a solution. 

Remarkably, wormholes as objects of study in math- 

Fig. 1. (a) Embedding diagram for a wormhole that connects two differ- 

ent universes, (b) Embedding diagram for a wormhole that connects two 

distant regions of our own universe. Each diagram depicts the geometry of 

an equatorial (6 = jr/2) slice through space at a specific moment of time 

(t = const). These embedding diagrams are derived quickly in item (b) of 

Box 2, and—in a more leisurely fashion—in Sec. Ill C, where they are also 

discussed. This figure is adapted from Ref. 1, Fig. 31.5. 

ematical relativity predate black holes: Within one year 
after Einstein’s final formulation of his field equations, the 
Viennese physicist Ludwig Flamm recognized that the 
Schwarzschild solution of Einstein’s field equations repre- 
sents a wormhole.13 Possible roles of the Schwarzschild 
and other wormholes in physics were speculated upon in 
the 1920s by Herman Weyl,14 in the 1930s by Einstein and 
Nathan Rosen,15 and in the 1950s by John Wheeler.16 

All hopes that Schwarzschild wormholes might exist in 
the real universe and be used for rapid interstellar travel are 
dashed by a series of major objections: 

(1) Tidal gravitational forces at the throat of a 
Schwarzschild wormhole are of the same magnitude as at 
the horizon of a Schwarzschild black hole: They are so 
large that, unless the wormhole’s mass exceeds 104 solar 
masses so its throat circumference exceeds 105 km, any 
adventurer would be killed trying to pass through the 
throat (cf. Ref. 1, Sec. 32.6). 

(2) A Schwarzschild wormhole is actually dynamic, not 
static. As time passes, it expands from zero throat circum- 
ference (two disconnected universes) to a maximum cir- 
cumference, and then recontracts to zero circumference 
(the universes disconnect).17 This expansion and recon- 
traction is so rapid that even moving at the speed of light 
one cannot pass all the way through the wormhole and into 
the other universe without being caught in the crunch of 
recontraction and killed by tidal gravity.16 

(3) A Schwarzschild wormhole possesses a past horizon 
(“antihorizon”) which, like that of a white hole, is unsta- 
ble against small perturbations.18,5 That instability enor- 
mously hastens the recontractive sealing off of the worm- 
hole, making it even more impossible to get through. 
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C. Wormholes that are traversible 

It turns out that there are very simple, exact solutions of 
the Einstein field equations, which describe wormholes 
that have none of the above problems. If, somehow, an 
advanced civilization could construct such wormholes, 
they could be used as a galactic or intergalactic transporta- 
tion system and they might also be usable for backward 
time travel. As we shall see below, it is not clear today 
whether the laws of physics prohibit or actually permit the 
construction of such “traversible wormholes”; but nothing 
we know makes them seem nearly as impossible as black 
hole or Schwarzschild wormhole transportation systems. 

The traversible wormhole solutions to Einstein’s field 
equations are so simple that they can be used as a tool for 
teaching beginning relativity students how to solve the Ein- 
stein equations, how to interpret physically solutions they 
have obtained, and how to explore the properties of solu- 
tions. The purpose of this article is to derive and discuss the 
traversible wormhole solutions in such a way as to make 
them readily accessible to teachers of elementary relativity 
classes, and to beginning relativity students. 

Because these wormhole solutions are so simple, it is 
hard for us to believe that they have not been derived and 
studied previously; however, we know of no previous stud- 
ies. We were stimulated to find them in the summer of 
1985, when Carl Sagan sent one of us a prepublication draft 
of his novel Contact19 and requested assistance in making 
the gravitational physics in it as accurate as possible. Sa- 
gan, in response to our preliminary description of these 
solutions’ properties, incorporated them into his novel at 
the galley proof stage. As a result, some teachers of relativi- 
ty might want to use his novel as a stepping stone into these 
solutions. 

Two relevant passages from Sagan’s novel are repro- 
duced in Box 1. The first passage describes the objections to 
black holes as means of interstellar travel, and a portion of 
the second passage describes the objections to Schwarz- 
schild wormholes. Students, after reading the novel, might 
be referred to some of the literature cited above (Refs. 1- 
18) for the technical details of these objections. The re- 
mainder of the second passage describes some key features 
of the traversible wormhole solutions, including the worm- 
holes’ ability to remain always open, very small tidal forces, 

Box 1. Excerpts from Contact by Carl Sagan.19 

After traveling through some sort of “tunnel” that took them in less than an hour from Earth to an orbit around the star Vega, five of the characters in 

the novel speculate on the nature of the tunnel: 

“You see,” Eda explained softly, “if the tunnels are black holes there are real contradictions implied. There is an interior tunnel in the exact Kerr 

solution of the Einstein Field Equations, but it’s unstable. The slightest perturbation would seal it off and convert the tunnel into a physical singularity 

through which nothing can pass. I have tried to imagine a superior civilization that would control the internal structure of a collapsing star to keep the 

interior tunnel stable. This is very difficult. The civilization would have to monitor and stabilize the tunnel forever. It would be especially difficult with 

something as large as the dodecahedron falling through.” 

“Even if Abonnema can discover how to keep the tunnel open, there are many other problems,” Vaygay said. “Too many. Black holes collect problems 

faster than they collect matter. There are the tidal forces. We should have been tom apart in the black hole’s gravitational field. We should have been 

stretched like people in the paintings of El Greco or the sculptures of... Giacometti. Then other problems: As measured from Earth it takes an infinite 

amount of time for us to pass through a black hole, and we could never, never return to Earth. Maybe this is what happened. Maybe we will never go home. 

Then, there should be an inferno of radiation near the singularity. This is a quantum mechanical instability... ” 

“And finally,” Eda continued, “a Kerr-type tunnel can lead to grotesque causality violations. With a modest change of trajectory inside the tunnel, one 

could emerge from the other end as early in the history of the universe as you might like—a picosecond after the big bang, for example. That would be a 

very disorderly universe. 

“Look, fellas,” she said, “I’m no expert in General Relativity. But didn’t we see black holes? Didn’t we fall into them? Didn’t we emerge out of them? 

Isn’t a gram of observation worth a ton of theory?” 

“I know, I know,” Vaygay said in mild agony. “It has to be something else. Our understanding of physics can’t be so far off. Can it?” 

He addressed this last question, a little plaintively, to Eda, who only replied, “A naturally occurring black hole can’t be a tunnel; they have impassible 

singularities at their centers.” 

pages 347,348 

Eda was, considering the circumstances, very relaxed. She soon understood why. While she and Vaygay had been undergoing lengthy interrogations, he 

had been calculating. 

“I think the tunnels are Einstein-Rosen bridges,” he said. “General relativity admits a class of solutions, called wormholes, similar to black holes, but 

with no evolutionary connection—they cannot be generated, as black holes can, by the gravitational collapse of a star. But the usual sort of wormhole, 

once made, expands and contracts before anything can cross through; it exerts disastrous tidal forces, and it also requires—at least as seen by an observer 

left behind—an infinite amount of time to get through.” 

Ellie did not see how this represented much progress, and asked him to clarify. The key problem was holding the wormhole open. Eda had found a class 

of solutions to his field equations that suggested a new macroscopic field, a kind of tension that could be used to prevent a wormhole from contracting 

fully. Such a wormhole would pose none of the other problems of black holes; it would have much smaller tidal stresses, two-way access, quick transit 
times as measured by an exterior observer, and no devastating interior radiation field. 

“I don’t know whether the tunnel is stable against small perturbations,” he said. “If not, they would have to build a very elaborate feedback system to 

monitor and correct the instabilities,” 

page 406 
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Box 2. Simple example of a traversible wormhole (posed as an exercise for students who have never encountered wormholes but know how to interpret 

and work with solutions of the Einstein field equations). 

A spacetime of special interest to certain people is one with the metric 

ds2= -c2 dt2 + dl2 + (bl + l2)(d92 + sin2 9dtp2), (B2a) 

where the coordinates have the ranges — oo <?< + oo, — oo </< + oo, 0<^<2 IT, b0 is a constant, and c is the speed of light. 

(a) Give as complete a description as you can of the physical and geometrical properties of (i) the coordinates t, l, 9, <f>, and (ii) the spacetime itself, in- 

cluding its symmetries, its asymptotically flat regions, if any, and its horizons, if any. 

(b) Construct an embedding diagram for the “equatorial plane” 6 = TT/2 at fixed “time” t. Discuss the physical interpretation of this embedding 

diagram. 

(c) Let e; ,e-„e -9 ,e ^ be unit basis vectors pointing along the t, /, 9, and tf> directions. The only nonzero components of the Riemann curvature tensor of this 

spacetime, expressed in this basis, are R-em = — Rim = — R-lhli, = b2
0/(b

2
0 + I2)2, and others related to these by the symmetries of the Riemann 

tensor R^s = — Rpar& = — Rapsr = + Rrsap- What is the stress-energy tensor of the matter and fields that generate this spacetime? Discuss the 

possibility of constructing, in the laboratory, matter and fields with this stress-energy tensor. 

(d) Show that an observer who falls freely and radially in this spacetime moves along the world line l=ut, 9 = const, 0 = const, where 

v = const < (speed of light). Show that such an observer’s local Lorentz frame has basis vectors e0. = ye; + (v/c)ye„ e; = ye-, + (v/c)ye-,, e,. = e;,, 

ey = ey, where y = (1 — v2/c2) W2. 

(e) Show that, if the observer falls sufficiently slowly, she feels arbitrarily small tidal gravitational force. 

Solution-. 

(a) Here t is a time coordinate that measures proper time of a static observer; 9,<j> are spherical polar coordinates; / is a radial coordinate measuring 

proper radial distance at fixed t. The spacetime is spherically symmetric and static; it has two asymptotically flat regions, /-♦ + oo and /-* — oo; it has no 

horizons. 

(b) Use cylindrical coordinates (z,r,tj>) in the embedding space, so ds2 = dz2 + dr2 + r dtp2. Then the two-surface 

z(r) = + b0 In(r/b0 + tl(r/b0)
2 — 1) with / = + (r — bn

2)1/2 has the same geometry as the 2-surface 9 = JT/2, t = const in the spacetime of Eq. (1). 

This embedded surface is shown in Fig. 1(a). 

(c) — T" = — T" = T= 7’** = (c4/8trG)bl/{bl + /2)2. Note that the stress has the same form (radial tension; tangential pressure; equal in 

magnitude) as the stress tensor of a radial electric or magnetic field, but the energy density is negative. The negative energy density makes it hopeless to 

construct in the laboratory today material or fields with this 7’'". [Note: negative energy density is not a generic property of traversible wormholes; see 

Box 3 and Sec. Ill F] 

(d) One may show constant free-fall velocity v by considering the geodesic equation for a test particle of mass n falling on an equatorial, radial 

trajectory, i.e., a trajectory with four-momentum components p" = ptyv, pe = p* = 0, p‘ = pty. The resulting equation of motion tells us that 

dl /dt = v = const. The basis vectors of the freely falling observer can be gotten from the orthonormal basis of the static observers by a special relativity 

Lorentz transformation. 

(e) In the observer’s local Lorentz frame the only nonzero tide-producing components of the Riemann tensor, Rj-o-k-o- (obtained by Lorentz transform- 

ing Rg;,^), are = Ryiryrr = ~ (u/c)2j^bo/(*o + /2)2. Thus the tidal accelerations (which are proportional to R/oio') vanish in the limit v—0. 

two-way travel (no horizons), rapid transit times as seen 
by both travelers and external observers, lack of intense, 
singularity-produced radiation fluxes, and also the require- 
ment that some sort of matter or field with radial tension 
thread the wormhole. A teacher of very talented students 
might want to point out this passage and, with no further 
hint except to assume spherical symmetry and time inde- 
pendence, might challenge the students to discover for 
themselves the traversible wormhole solutions of the Ein- 
stein equations. Some readers of this article might want to 
stop at this point and derive the new solutions without 
further hints. 

A simple special case of the traversible wormhole solu- 
tions is the metric described in Box 2. This Box is adapted, 
with only small changes, from the final exam in a 6-week 
beginning course on general relativity, which one of us 
taught at Caltech in autumn 1985. (The students were not 
taught anything about wormholes in the course; but they 
were taught how to explore the physical meanings of space- 
time metrics, and their ability to do so was tested by the 
questions in the Box. It was startling to see how hidebound 
were the students’ imaginations: Most could decipher de- 
tailed properties of the metric, but very few actually recog- 

nized that it represents a traversible wormhole connecting 
two different universes.) 

Box 3 describes, in brief, the properties of the traversible 
wormhole solutions; and the remainder of this article pre- 
sents them in considerable detail, in a manner and at a level 
of technicality appropriate for a person who has had only a 
very quick, elementary introduction to general relativity— 
e.g., somebody who has studied only Price’s beautiful 
“General Relativity Primer.”20 

Section II of this article lists and discusses the properties 
that one would like a wormhole to have if it is to be a viable 
route for interstellar travel. This list of desired properties is 
used as a guide for Sec. Ill’s detailed derivation of the tra- 
versible wormhole solutions and its detailed exploration of 
their properties—including the possibility that they might 
be usable for backward time travel (Sec. Ill I). The math- 
ematical details of several specific wormhole solutions are 
presented in an Appendix. We conclude with a summary 
discussion in Sec. IV. 

Throughout we shall use Price’s notational conven- 
tions,20 which are the same as those of MTW,1 except for 
using cgs units with c (speed of light) and G (Newton’s 
gravitation constant) not set to unity. 
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Box 3. Overview of traversible wormhole solutions (for details see Secs. II and III of text). 

(1) Radial coordinates: r such that 2trr = circumference; / = + (proper radial distance from wormhole throat) with + in upper universe, — in 

lower; see Fig. 1(a). 

(2) Solution is determined by two freely specifiable functions of r. b{r) = shape function, defined by dl/dr = + (1 — b/r)~'n, <t>(r) = redshift 

function, defined by g„ = — e2*. 

(3) Spacetime metric: ds2 = — c2®c2 dt2 + (l — b /r)1 dr + ^(dO2 + sin2 dd<j>2). 

(4) Orthonormal basis of reference frame of static observers: e; =e~'*’e,,e> = (1 — b/r),ner, e-e = r~lee,e^, = (rsin 0)_le, 

(5) Contraints on b{r) and <t>(r) to produce a traversible wormhole: 

(a) General constraints: 

■Spatial geometry must have wormhole shape. Throat is at minimum of r, there r = b = b0\ throughout spacetime 1 — 6/r>0; as l— ± oo 

(asymptotically flat regions of two universes) 6/r-> 0 so rs |/1; see Fig. 1. 

■No horizons or singularities =><t> is everywhere finite; t measures proper time in asymptotically flat regions <=><!>-*0 as l 

(b) Description of a trip through wormhole, and constraints that follow from it: 

•Radial velocity of traveler as measured by static observers: u(r); /= [1 — (u/c)2]~,n. 

■Trip begins at / = — /„ ends at / = + /2; t> = 0 at — /, and + /2; gravity is weak at — /, and + /2: b/r 41, |4>| < 1, |<I>'c2| Sg 

gravity). Here and below ‘=d/dr = (1 — b/r) ,nd/dl. 

•Trip takes less than 1 year as seen by traveler, Ar = St(vy)~'dlS 1 yr., and also as seen by static observers at —and + /2, 

&t = S±',](ve9)-'dl& \ yr. 

■Traveler feels less than gs acceleration, \e~4’d(ye,‘)/dl | /c2 = l/(0.97 1 yr.). 

■Traveler feels tidal-gravity accelerations between different parts of her body with magnitude Sg9 : 

|(1 -b/r) [ -<D" + \(b' -b/rW/(r- b) - (<J>')2]| 5 1/(1010 cm)2; 

\\(f/r2)[(v/c)2(b'~b/r) + 2(r—*)<£']| S l/( 1010 cm)2. 

■Traveler must not couple strongly to material that generates wormhole curvature (wormhole must be threaded by a vacuum tube through 

which she moves, or wormhole material must be of type that couples weakly to ordinary matter). 

(6) The material that generates the wormhole’s spacetime curvature: 

(a) Stress-energy tensor as measured by static observers: 

7~ = pc2 = (density of mass-energy), Tn = - r = - (radial tension), TVe = T-^=p= (lateral pressure). 

(b) Einstein field equations: With '=d/dr= (1 — b/r)~il2d/dl 

(Earth 

P = - 
b' b/r-2{r-bW 

p = —[ (pc2 — r)<P' — /] — r. 
8-rrGc 2r2 ’ 8 trGc V 

Correspondingly, in the throat (at r = b = b0), p andp depend on the throat shape, while 

r = (8irGc~4bl)~>~5X 1041 dyncm_2(10 m/fi0)
2. 

(c) (Field equations) + (absence of horizon at throat) => r > pc2 in throat => traveler moving through throat at very high speed sees negative mass- 

energy density => violation of weak, strong, and dominant energy conditions in throat (“exotic” matter that might—but it is not known for 

sure—be forbidden by laws of physics). 

(d) One might wish to requirep>0 everywhere (static observers see nonnegative mass-energy density); this implies b >0 everywhere. 

II. DESIRED PROPERTIES OF TRAVERSIBLE 
WORMHOLES 

We have seen in Sec. I a plethora of objections to inter- 
stellar transportation systems based on black holes and 
Schwarzschild wormholes. These objections motivate us to 
initiate our study of traversible wormholes by listing all the 
properties that we might like them to have. This section 
presents such a list in the order that we shall use them in 
Sec. Ill’s study of the traversible wormholes. Our list will 
be stated verbally; mathematical details will be omitted un- 
til Sec. III. 

(1) The metric should be both spherically symmetric 
and static (time independent). This requirement is im- 
posed only to simplify the calculations, and one should 
keep in mind that the wormhole might be unstable to 
spherical or nonspherical perturbations. 

(2) The solution must everywhere obey the F.instpin 
field equations. We assume the correctness of general rela- 
tivity theory. 

(3) To be a wormhole the solution must have a throat 
that connects two asymptotically flat regions of space- 

time; i.e., an equatorial embedding diagram must have 
qualitatively the form of Fig. 1. 

(4) There should be no horizon, since a horizon, if pres- 
ent, would prevent two-way travel through the wormhole. 

(5) The tidal gravitational forces experienced by a trav- 
eler must be bearably small. 

(6) A traveler must be able to cross through the worm- 
hole in a finite and reasonably small proper time (e.g., less 
than a year) as measured not only by herself, but also by 
observers who remain behind or who await her outside the 
wormhole. 

(7) The matter and fields that generate the wormhole’s 
spacetime curvature must have a physically reasonable 
stress-energy tensor. It turns out that the form of the stress- 
energy tensor is strongly constrained by the preceding six 
properties. That constrained form in fact violates what we 
usually mean by “physically reasonable.” In Secs. Ill F 2 
and III F 3 we shall discuss the prospects for such a stress- 
energy actually to be achieved, and we shall take some care 
to minimize the violation of physical reasonableness. 

(8) The solution should be perturbatively stable (espe- 
cially as a spaceship passes through). Enforcing this re- 
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quirement would involve a time-dependent and nonspheri- 
cal analysis, which is beyond the scope of this article. In 
Sec. Ill G this is discussed (albeit briefly). 

(9) It should be possible to assemble the wormhole. For 
instance, the assembly should require both much less than 
the mass of the universe and much less than the age of the 
universe. Although not enough is known to permit a quan- 
titative analysis, present knowledge of quantum gravity 
suggests that assembly might be possible; see Sec. Ill H. 

Properties 1 through 4 we shall call the “basic wormhole 
criteria.” Properties 5 and 6 will help us tune the worm- 
hole’s parameters for human physiological comfort, so we 
shall call them “usability criteria.” By means of Property 7, 
we shall tune the parameters for our own aesthetic com- 
fort—i.e., we shall tune them to make the wormhole’s con- 
struction material as compatible as possible with our pres- 
ent prejudices about the forms of matter allowed by the 
laws of physics. 

In summary, we shall build a solution of the Einstein 
equations using properties 1 through 4 and then shall ad- 
just the wormhole’s parameters by seeking a balance 
among conditions 5, 6, and 7. 

III. MATHEMATICAL DETAILS OF 
TRAVERSIBLE WORMHOLES 

In this section we present a general mathematical treat- 
ment of wormholes that possess the above properties, and 
in the Appendix we present specific examples of such 
wormholes. Since the Appendix examples illustrate many 
of the issues treated in this section, some readers might 
wish to study the Appendix in parallel with this section. 

A. Form of the metric 

Property 1 of Sec. II requires that the spacetime metric 
for the wormhole be expressible in the static, spherically 
symmetric form [Ref. 20, Eq. (6.4) or Ref. 1, Eq. (23.7)]: 

ds2 = — e24>c2 dt2 + dt^/i 1 — b /r) 

+ ^{dO2 + sin2 Gd(j)2). (1) 

Here, = <I>(r) and b = b(r) are two arbitrary functions 
of radius only, to be constrained by the enumerated proper- 
ties in Sec. II, and c is the speed of light. As we shall see 
below, b{r) determines the spatial shape of the wormhole, 
so we shall call it the “shape function,” and <F(r) deter- 
mines the gravitational redshift, so we shall call it the “red- 
shift function.” Notice that the radial coordinate r has spe- 
cial geometric significance: 2vr is the circumference of a 
circle centered on the wormhole’s throat, and thus r is 
equal to the embedding-space radial coordinate of Fig. 1. 
As a result, r is nonmonotonic: It decreases from + ootoa 
minimum value, b0, as one moves through the lower uni- 
verse of Fig. 1 toward the wormhole and into the throat; 
then it increases from b0 back to + oo as one moves out of 
the throat and into the upper universe. [In the specific 
wormhole solution of Box 2, above, the radial coordinate l 
is related to r by / = + (r2 - 6?,)1/2 with + in the upper 
universe and — in the lower, and the functions <!>(/•) and 
b(r) are d> = 0, b = b^/r.] 

B. Equations of structure for the wormhole 

1. The Riemann, Ricci, and Einstein tensors 

In order to impose the Einstein field equations and in 
order to evaluate the tidal forces felt by travelers who cross 
the wormhole, we shall need the Riemann and Einstein 
tensors for the metric [Eq. (1) ]. These are worked out in 
most advanced textbooks, but for the benefit of readers 
who have had only an elementary introduction to general 
relativity, e.g., Ref. 20, we shall sketch a derivation. 

From our metric (1) written in the form, 

ds2 = galj dx“ dxP, x° = ct, x' = r, x2 = 9, x3 = (f>, 

(2) 

the Christoffel symbols (connection coefficients) Tpy and 
the components R aer& of the Riemann curvature tensor are 
computed using the standard formulas [Ref. 20, Eqs. 
(3.45) and (4.22)], 

TPr = 2 SaA (8xe,r + gxr,e ~ gpy.x ) > (3) 
pa — pa   pa , pa p/t   pa p/l (As 
-*'■ 0y8 (38,y ^ f3y,8 > Ay * 08 * AS *■ (3y * v^/ 

where the comma denotes a partial derivative 

(gafly = dgali/dxr). 
By applying these equations to the metric (1) we readily 

find the 24 nonzero components of the Riemann tensor: 

R,nr= -RL^d-b/n-'e-^R^ 

= -(l -b/r)-xe-2*Rr
m 

= -<!>" + {b V - b) [2r(r -b)]-'Q'- (<P')2, 

R‘e»= -R,eet=^e-1*Re
tte= -?e-**R%, 

= -A4>'(1 -b/r), 

R = -R = r2e-2* sin2 OR % 

= 29R% 

= — r <J>'(1 — h/r)sin2 6, (5) 

R ere = - R eer = ~ ~b/r)R e„e 

= r2! 1 —b/r)R %r 

= {b'r-b)/2r, 

RW= -Rur= ~ 1
 - 

b /'')Sin2 9R U 

= r2{ \ —b /r) sin2 OR %r 

= {b'r— 6)sin2 0/2r, 

R = — R 6^e = s*n2 @R ~ — s'n @R te$ > 

= (b/r)sin20, 

where the prime denotes a derivative with respect to the 
radial coordinate r, and the basis vectors being used are 
those (e,,er,es,e0) associated with the coordinate system 
ct,r, 0,<j), i.e., such that the vector separation between two 
events with coordinate separation (At,&r,A9,&<f>) is 
As = cAte, + Arer + A0ee + A^. [In the notation pre- 
ferred by differential geometers, e, = c~xd/dt,er — d/dr, 
e0=d /30, and e* = d /d<f>. ] 

The details of subsequent mathematics and of physical 
interpretations will be simplified by switching to a set of 
orthonormal basis vectors—the “proper reference frame” 
of a set of observers who remain always at rest in the coor- 
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dinate system (r,6,(f> constant): 

e; = e ~ ^e,, e-r = (1 - b/r) l/2er, 

eg = r~'ee, e* = (rsin 0)~'e*. 

In this basis the metric coefficients take on their standard, 
special relativity forms, 

Sap *^P VaP 

- 1 0 

0 1 

0 0 

0 0 

0 0 

0 0 

1 0 

0 1 

(7) 

and the 24 nonzero components of the Riemann tensor, 
Eqs. (5) above, take on the much simplified forms: 

make: 

7V, =p(r)c2, Tn = - r(r), and T-g-g = =p(r), 
(13) 

where p(r) is the total density of mass-energy that they 
measure (in units of g/cm3); r(r) is the tension per unit 
area that they measure in the radial direction (i.e., it is the 
negative of the radial pressure and has units dyn/cm2); and 
p{r) is the pressure (in dyn/cm2) that they measure in 
lateral directions (directions orthogonal to radial). 

The stress-energy tensor of an ordinary “perfect fluid” is 
a special case of Eq. (13); it has —r = p. Another special 
case is a radially pointing electric field of strength E{ r), for 
which T — p — pc2 = E2

/%TT. 

= (1 -b/r){-<b" 

+ {b V- b)[2r{r-b) (<h')2}, 

R \re = - R \gt = R % = - R = - (1 — b /r)V/r, 

= - R u, = R t,i = -R%) = - (1 -b/rw/r, 

R me = Rem=R %r = R ne = (^ r — b)/2f, (8) 

R'iri= ~R%r=R%r = ~ R U = (b 'V - b)/if, 

R %j> = — R | ~fg = R \$g = — R%fy=b /f. 

From here we can contract the Riemann tensor to calcu- 
late the Ricci tensor Rf-ti, and the scalar curvature R, 

Rp> = R%, (9) 

R=SA%i„ (10) 

and from these we can compute the Einstein tensor that 
enters into the Einstein field equations: 

Gfiv=Rfir-lRgiiv- (11) 

This computation yields the only nonzero components of 
the Einstein tensor: 

Gj, = b'/r2; 

Gn= -b/r3 + 2(1-b/r)<l>'/r; (12) 

G&& = = fl — AV** - <&' + (4>')2 

\ r/\ 2r(r — b) 

] <t>' b'r-b \ 

r 2f{r — b)J 

2. The stress-energy tensor 

Birkhoff’s theorem (Ref. 1, Sec. 32.2) tells us that only 
one kind of vacuum, spherical wormhole is allowed by the 
Einstein field equations: a (nontraversible) Schwarzschild 
wormhole. Thus a traversible wormhole must be threaded 
by matter or fields with a nonzero (nonvacuum) stress- 
energy tensor. 

Since the Einstein field equations require that the stress- 
energy tensor be proportional to the Einstein tensor, in our 
orthonormal basis the stress-energy tensor must have 
the same algebraic structure as the of Eq. (12): The 
only nonzero components must be 7~, Tn, and Tgg = 7^. 
Since the basis vectors are those used by static observers, 
each of these components has a simple physical interpreta- 
tion in terms of measurements that static observers might 

3. The Einstein field equations 

The Einstein field equations, 

G'a’p — SirGc 4 T~t(i, 

as evaluated from the Einstein tensor (12) and the stress- 
energy tensor (13) become, after a bit of manipulation, 

b' = SirGc~2r1p, (14) 

<!>' = ( — SirGc~4Tf + b)/[2r{r — b) ], (15) 

r' = (pc2 — r)d>' — 2{p + r)/r. (16) 

Equations (14) and (15) are the temporal and radial parts 
of the field equations, respectively. Equation (16) is the 
lateral (9,<f>) part of the field equations with <l>" eliminated 
using the radial derivative of Eq. (15). 

We may also interpret Eq. (16) in a straightforward 
physical manner. It is simply the equation of hydrostatic 
equilibrium for the material threading the wormhole. In- 
deed, we encourage readers to derive this equation for 
themselves by a physical argument that balances the forces 
on a small chunk of the wormhole’s material—forces due 
to the radial tension gradient, the lateral “Roman arch” 
pressure, and the gravitational pull. In evaluating the grav- 
itational pull on the chunk, readers will need to know the 
tensorial nature of inertial mass (see, e.g., Ref. 1, Exercise 
5.4) and will need to recognize that the gravitational accel- 
eration felt by the chunk is the negative of the chunk’s four- 
acceleration (“Einstein elevator experiment”). The redun- 
dancy between the Einstein field equations and the law of 
force balance (or, better, the law of four-momentum con- 
servation ) is a deep and important aspect of general relativ- 
ity (see, e.g., Ref. 1, Sec. 17.2). 

The field equations (14)—(16) are three differential 
equations relating five unknown functions of r: b, d>, p, r, 
and p. The normal approach to solving these equations 
would be to assume some specific type of matter or fields 
for the source of the stress-energy tensor, and from the 
physics of that source to derive “equations of state” for the 
radial tension as a function of mass-energy density r(p) 
and for the lateral pressure as a function of mass-energy 
density p{p). These equations of state, plus the three field 
equations, would be five equations for five unknown func- 
tions (b,<P,p,T, and p) of r. For example, if we were study- 
ing the structures of neutron stars, we would set 
— r(p) = pip) = (equation of state derived from nuclear 

theory); see, e.g., Ref. 1, Chap. 23. As another example, if 
we were studying an electrically charged black hole we 
would set T = p = pc2 in accord with the stress-energy ten- 
sor of a radial electric field, and we then would obtain from 
Eqs. (14)—(16) the Reissner-Nordstrom solution of the 
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Einstein field equations; see, e.g., Ref. 1, Exercise 31.8. 
In our study of traversible wormholes the philosophy of 

solving the field equations (14)—(16) must be altered 
somewhat from the usual one. We desire solutions with 
certain properties (enumerated in Sec. II), and to achieve 
them we must be willing to let the builders of a wormhole 
synthesize, or search throughout the universe for, materi- 
als or fields with whatever stress-energy tensor might be 
required. Stated mathematically, we wish to control the 
functions b(r) and <b(r) so as to shape the wormhole to our 
specifications; and, accordingly, we must let the relation- 
ships betwen p, T, and p dangle, only to be fixed by the field 
equations and our restricted choices for b and <t>. 

In accord with this philosophy, it is convenient to re- 
write Eqs. (14)—(16) in the slightly different form: 

p = b '/[87TGC
_
V], (17) 

T= [b/r— 2{r— 6)<l>']/[87rG;c_4/'2], (18) 

p = (r/2) [ (pc2 — r)<I>' — r'] — r. (19) 

The forms of these equations suggest the strategy for solu- 
tion: Tailor b(r) and d>(r) to make a nice wormhole; Eq. 
(17) and our choice for b(r) will then give us p(r); Eq. 
(18) and our choices for both b (r) and d> (r) will then yield 
r(r); and, finally, Eq. (19) together with the above will 
determine p(r). 

4. Boundary conditions 

In some cases, we may wish to let the stress-energy that 
generates the wormhole’s curvature extend out to arbitrar- 
ily large radii. In others, we may confine it to the interior of 
a sphere of some surface radius r = Rs, i.e., we may require 
that p, T, and p vanish at all radii r>Rs. In this latter case, 
Eqs. (17)—(19) require that the radial tension r go 
smoothly to zero as one approaches r = Rs from below, 
but they permit p and p to be cut off discontinuously: 

r—*0, but p andp may remain finite 

in lim r->Rs from below. (20) 

(These are special cases of “junction conditions” discussed 
more generally in Ref. 1, Sec. 21.13.) Equations (14)—(16) 
evaluated in the vacuum region outside r = Rs constrain 
the external spacetime geometry to have the standard 
Schwarzschild form, 

b(r) = b(Rs) = const=2? at r>Rs, (21) 

d>(r) = i ln(l — B/r) at r>Rs. (22) 

If we had chosen not to cut the matter field ofl" but to join 
discontinuously in radius various kinds of matter stress- 
energy, the field equations would enforce continuity of r, b, 
and <t> but permit discontinuities of p and p; cf. Ref. 1, Sec. 
21.13. 

If there is no cutoff in the stress-energy, we shall still 
require that the field die out fast enough radially that 
spacetime is asymptotically flat: 

b/r->0 and <I>-»0 as r-* oo. (23) 

C. Spatial geometry of the wormhole 

1. The mathematics of embedding 

Below we shall use embedding diagrams to help us im- 
pose the demand that the spacetime metric (1) describe a 
wormhole. Of particular interest is the geometry of three- 

dimensional space at a fixed moment of time t. That geome- 
try is spherically symmetric, so without significant loss of 
information we can confine attention to an equatorial slice, 
9 = TT/2, through it. The line element for such a slice is 
obtained by setting t = const, 9 = TT/2 in Eq. (1): 

ds2 = (1 — b/r)~l dr1 + r2 d(f>2. (24) 

We wish to construct, in three-dimensional Euclidean 
space, a two-dimensional surface with the same geometry 
as this slice, i.e., we wish to visualize this slice as removed 
from spacetime and embedded in Euclidean space (cf. Ref. 
1, Sec. 23.8). In the embedding Euclidean space we intro- 
duce cylindrical coordinates z, r, and cf). Then the Euclid- 
ean metric of the embedding space has the form 

ds2 = dz2 + dr2 + r2 d<f>2. (25) 

The embedded surface will be axially symmetric and thus 
can be described by the single function z = z{r). On that 
surface the line element will be 

ds2 = dr2 + r2 dtj>2. (26) 

This line element will be the same as that of our equatorial 
slice through the wormhole [Eq. (24)] if we identify the 
coordinates (r,<f>) of the embedding space with the (r,<f>) of 
the wormhole’s spacetime, and if we require the function 
z(r), which describes the embedded surface, to satisfy 

dz 

Jr 
(27) 

This surface z = z(r) is what is pictured in Fig. 1 (a); and 
Eq. (27) displays the manner in which the function 
b = b(r) shapes the wormhole’s spatial geometry. 

2. Schwarzschild wormhole 

As a specific example, consider a Schwarzschild worm- 
hole for which b(r) = const = B. The embedded surface 
[solution of Eq. (27) ] in this case is 

z{r) = +2B(.r/B—\)112; (28) 

cf. Ref. 1, Eq. (23.34). The wormhole’s throat in this case 
is located at r = B (“Schwarzschild radius”). Notice that 
dz/dr is infinite at the throat [Eq. (27) ]. Of course, this is 
true for any wormhole, not just for Schwarzschild, because 
dz/dr = oo corresponds to a vertical slope of the embed- 
ding surface in Fig. 1, which is precisely what we mean by 
“throat.” 

Because of the divergence of dz/dr at the throat, r is not a 
good coordinate to use in the throat’s vicinity. Much better 
is proper radial distance as measured by static observers: 

dl= ± [1 -B/r] ~ 1/2 dr; (29a) 

i.e., 

/= + [Xr-B) +B\n(^/B +Jr/B- 1)]. (29b) 

This radial distance is positive [ + sign in Eqs. (29a,b) ] 
above the throat (“upper universe”) and negative [ — sign 
in Eqs. (29a,b) ] below the throat (“lower universe”); cf. 
Fig. 1. 

Very far from the Schwarzschild throat the embedding 
surface becomes flat 

—(/-. ± «,)=(), (30) 
dr 
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Fig. 2. Embedding diagram for a general wormhole, as seen in profile. 

(The diagram must be rotated about the vertical z axis to make it com- 

plete; cf. Fig. 1.). 

corresponding to the two asymptotically flat regions 
(/-* + oo and /— — oo), which the wormhole connects. 

3. General wormhole 

Every wormhole, by definition of “wormhole,” must 
have a minimum radius r = b0 (the wormhole throat) at 
which its embedded surface is vertical, i.e., at which expres- 
sion (27) is divergent, i.e., at which b(r) = r. We shall 
denote the common value of r and b at this throat by b0: 

there exists a minimum radius r = bQ in the wormhole; 

and at r = b0, b = b0. (31) 

As for a Schwarzschild wormhole, so also in the general 
case, the radial coordinate r is ill behaved near the throat; 
but proper radial distance 

Hr) -±r— Jb„ [ 1 — i 

dr 
(32) 

■b(r)/r]w2 

must be well behaved everywhere; i.e., we must require that 

l{r) is finite throughout spacetime, (33) 

which also implies that 

1 — b /r> 0 throughout spacetime. (34) 

Far from the throat in both radial directions space must 
become asymptotically flat; i.e., dz/dr = + (r/b — 1) ~1/2 

must approach zero as 1-* + oo; i.e., 

b/r—> 0, as /—* + oo. (35) 

Note that Eqs. (27) and (32) imply that for the embedded 
wormhole 

Figure 2 depicts a somewhat general wormhole shape 
and the geometrical meanings of Eqs. (36). 

D. The absence of a horizon 

In any static, asymptotically flat spacetime, including 
that of a wormhole, it is easy to identify horizons: They are 
the physically nonsingular surfaces at which 

goo= — e2<t>->0 (vanishing proper time lapse during any 
finite coordinate time).21 For example, a Schwarzschild 
wormhole possesses a horizon precisely at its throat, r = B. 

The demand that our traversible wormholes not possess 
any horizons corresponds, then, to 

d> (r) is everywhere finite. (37) 

E. Tidal gravitational forces and time to traverse the 
wormhole 

Turn attention now to a thought experiment in which a 
traveler journeys radially through a wormhole, beginning 
at rest in a space station in the lower universe, at / = — lu 

and ending at rest in a space station in the upper universe, 
at / = + /2. (See left side of Fig. 2.) Denote by v{r) the 
radial velocity of the traveler as she passes radius r, as mea- 
sured by a static observer there; and define y= [ 1 — (v/ 
c)2] -1/2, as in special relativity. Then in terms of distance 
traveled dl, radius traveled dr, coordinate time lapse dt, 
and proper time lapse as seen by the traveler drT, 

dl _ dr 

e*dt + {\-b/r)me*dt 

vy= 
v 

[1 - (y/c)2]1'2 

dl 

drT 

(38a) 

dr 

(1 — b/r)l/2 drT 

(38b) 

Here, the ( — ) sign refers to the first half of the trip (lower 
universe); the ( + ) sign to the second half (upper uni- 
verse). Because the trip begins and ends at stations that are 
at rest, we have 

v = 0 at 1= — lj and / = + l2; 

v>0 at —/,</<+/2. (39) 

The stations at / = — lx and l — ±l2 must be far enough 
from the throat for the gravitational effects of the worm- 
hole to be small. In particular, (i) the geometry of space 
there must be nearly flat, b /r 41; (ii) the gravitational red- 
shift of signals sent from the stations to infinity must be 
small [ A (wavelength) / (wavelength) =e~'t> — Is 
— d><^l; i.e., |$|<1; cf. Ref. 1, pp. 657-659]; (iii) the 
“acceleration of gravity” as measured at the stations, 
g — — (1 — b/r) 1/2<t>'c2s — must be less than or of 
order 1 Earth gravity, g9 = 980 cm/s2: 

b/r41, |«I>|<1, 

|<I>'c2| Sg& at l = — /j and /= +12. (40) 

Because |<I>| 1 at the stations, the proper time ticked by 
clocks there is equal to coordinate time t; cf. the spacetime 
metric (1). 

If wormhole travel is to be at all convenient for human 
beings, the traveler’s journey must satisfy three con- 
straints: (i) the entire trip should require less than or of 
order 1 year as measured both by the traveler and by people 
who live in the stations, 

A f'2 dl<i ATJ = I —51 yr., (41a) 
J-i,vy 

>
 

II SA
 

(41b) 

(ii) the acceleration a felt by the traveler must not exceed 
by much 1 Earth gravity; (iii) the tidal accelerations Aa 
between various parts of the traveler’s body must not ex- 
ceed 1 Earth gravity. 

As an aid to discussing the accelerations felt by the trav- 
eler, we introduce the orthonormal basis of her own refer- 
ence frame, ,e;. ,e2. ,e-y. Expressed in terms of the ortho- 
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normal basis of the static observers, e;,e-r,e§,e^, the 

traveler’s basis is given by the standard special relativity 
Lorentz transformation, 

eg = u = ye; + y(v/c)e?, e;. = =j= ye-r + y(v/c)e-„ 

er=e§, ey = e*. (42) 

Here, u is the traveler’s four-velocity. Note that ej- points 

along the direction of travel (toward increasing /). 

The traveler’s four-acceleration aa' = -e uP c2 is the 

acceleration that her body feels. Since four-acceleration is 

always orthogonal to four-velocity, am = a-eg,, 

= ag, = — a0 vanishes. Because the traveler moves radi- 

ally, her acceleration must be radial, so a-r — ay =0 and 

a = ae-v, with a the magnitude of the acceleration. The ea- 

siest way to compute a is to regard ua as a function of the 

traveler’s radial location r, to evaluate 

a,/c2 = utaua = utru
r — TatpUaup in the {ct,r,d,<f>) coor- 

dinate frame, and then to note that a, 

= a>e, = (ae,.)-(e,) = — y(v/c)e*a [cf. Eqs. (42), (6), 

and (7) ]. The result is 

a=+^l — —j e~*(.ye*)'c2 — e~^^{ye>)c2. (43) 

Our demand that the traveler not feel an acceleration larger 
than about 1 Earth gravity corresponds, then, to 

c-o> diye*) 

dl 

 1 

0.97 l.yr. 
(44) 

Turn, next, to the tidal gravitational forces that the trav- 
eler feels. Denote by | the vector separation between two 

parts of her body (e.g., head to feet); % is purely spatial in 

the traveler’s reference frame, i.e., |*u = — ’ = 0, where 
u is her four-velocity. Then the tidal acceleration between 
the two parts of her body is given by (cf. Ref. 1, Box 37.1) 

A aa' = -c2R%.yyup'fr'us. (45) 

Here, R %yy are the components of the Riemann curva- 

ture tensor. [For readers who have not previously met Eq. 
(45) but who are familiar with the equation of geodesic 

deviation, we point out that the right-hand side of Eq. (45) 

is precisely the relative acceleration (tidal acceleration) of 
two freely falling test particles that have separation | and 
four-velocity u. The fact that the observer is accelerated 

(does not fall freely) has no influence on the relative acce- 

lerations that she feels.] Since ua = <5§ and g°= 0 in the 

traveler’s frame, and since R&~p.y% is antisymmetric in its 

first two indices, Aa“ is purely spatial with components, 

A a* = - c2R = ~ c2Ryo-k.yfk'. (46) 

By transforming the components (8) of the Riemann ten- 
sor from the static observers’ frame e-t,e-r,e-e,e^ to the trav- 

eler’s frame eg, ,e j. ,ej. ,e§, [ a special relativity type transfor- 

mation (Lorentz transformation) since both sets of basis 
vectors are orthonormal], we obtain 

T^i'g'i'O' = ~ ^1 

X( - O" + b'.r~b <&' - (<t>')2\ 
V 2 r(r-b) I 

(47a) 

R 2'0'2'0' ■ Ryiyyiy 

— y^Rgifft + 

2/-H 
b'-— ) + 2(r-6)<t>' 

(47b) 

Since these are the only non vanishing parts of Rj-g.* ,g, in the 

traveler’s frame, the tidal acceleration (46) takes on the 

simple form 

Aa' = —c2Ryg,;,g'^', = c Ryyyol2> 

Aa5’= — c2R%.vyv E;~y. (48) 

We must insist that, for |§| ~2 m (the size of the traveler’s 
body) and for | oriented along any spatial direction in the 
traveler’s frame, |Aa| 5 (1 Earth gravity) =g9s. By com- 

bining Eqs. (47) and (48) we can write this constraint as 

(-IX- <s>" + 
b'r-b 

2 r(r-b) 
<!>' _ 

8* 

l^2'6'2'0' I ~ 

C2X2 m (10'° cm)2 

’-T)
+2

<" 

(49) 

J— 
2r2 

f 6)<D' 

<—^—»   -. (50) 
c2x2m (1010 cm)2 

The radial tidal constraint (49) can be regarded as con- 
straining the metric coefficient <f>. That constraint is most 

easily satisfied by setting 4>' = 0 everywhere—a class of 
wormhole solutions which we shall discuss in Sec. 1 of the 
Appendix. The lateral tidal constraint (50) can be regard- 

ed as constraining the speed v with which the traveler 
crosses the wormhole. In the Appendix, we shall study the 
implications of both of these constraints for specific worm- 

hole solutions. 

F. The stress-energy that generates the wormhole’s 

spacetime curvature 

1. Constraints on the tension and mass density at the 

throat 

The constraints that we have placed on the wormhole’s 
shape function b(r) give rise, via the Einstein field equa- 

tions (17)-(19),to constraints on the mass densityp, radi- 
al tension r, and lateral pressure p, which generate the 
spacetime curvature. 

The most severe constraints occur in the wormhole’s 
throat. The fact that r = b = b0 at the throat, together with 

the fact the (r — 6)d>'->0 there [which follows from finite- 

ness ofp and hence of b', Eq. (17), and from the absence of 
a horizon and hence the finiteness of d>] implies, via the 
field equation (18), that 

T0S= (tension in throat) 

= —! 5X10" <W10 nV 
SnGc~4bl cm2 V b0 ) 

5X10“ 
dyn / 1 1. yr. \2 

cm2 \ b0 J 
(51) 

This is an enormous tension. When 60~3 km, r0 has the 
same magnitude, ~ 1037 dyn/cm2, as the pressure at the 
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center of the most massive of neutron stars. Even for the 
extremely large throat size b0 = 1 1. yr., r0 could be pro- 
duced by a magnetic field only if the field strength were 
B~~ 106 Gauss. 

In the neighborhood of the throat we can investigate an- 
other key aspect of this tension by defining the dimension- 
less function, 

f._r — pc2 b/r— b' — 2(r — b)<&' 

^ |pc2| - j^| ’ 

where we have used the Einstein field equations (17) and 
(18) to replace the stress-energy functions r and p by their 
geometric counterparts b and d>. This dimensionless func- 
tion f (/) enters into the following discussion. 

The requirement that the wormhole be connectible to 
asymptotically flat spacetime entails at the throat that the 
embedding surface flare outward as shown in Figs. 1(a) 
and 2. The outward flaring of the throat means mathemat- 
ically that the inverse of the embedding function r(z) must 
satisfy d 2r/dz2 > 0 at or near the throat, r = b. In exploring 
the consequences of this constraint, we start with Eq. (27) 
in the inverted form, 

Wr) ) 
(53) 

dr _ 

dz ~~ ^b(r) 

Differentiating this with respect to z we obtain one version 
of the flaring-out condition: 

d2r b — b'r 

dz2 

(54) 

- > 0 at or near the throat, r = b. 

A second version can be obtained as follows. By combining 
Eqs. (52) and (54) we may rewrite f at any radius r as 

= lb2 (d2r\ _ 

r\b '| Wz2/ 
2(r-b) 

<£>' 

lb' I 
(55) 

This relation, together with finiteness of p and hence of b' 
[Eq. (17)] and the fact that {r — b)<P'->0 at the throat 
(see above), enables us to rewrite the flaring-out condition 
(54) as 

2 

£o = ——^7— > 0 at or near the throat , r = b = b0. 
IPoH 

(56) 

2. Troublesome aspects of T0> p0c
2 

The constraint r0>/j0c2 is deeply troublesome; it says 
that in the throat the tension must be so large as to exceed 
the total density of mass-energy p^f2. We shall call material 
with this property, T>p<? > 0, “exotic.” 

The exotic nature of the wormhole’s throat material, 
r0>p0c2 is especially troublesome because of its implica- 
tions for measurements made by an observer who moves 
through the throat with a radial velocity close to the speed 
of light, 1. Such an observer sees an energy density 
[projection of the stress-energy tensor (13) on her time 
basis vector eg. = ye~, + y(v/c)e~r] given by 

To* = y2T7l+2y2(v/c)2T--r + f(v/c)2Tn 

= f[p0C2 - (V/C)2T0) = f(pnC2 - T0) + To- 
(57) 

If such an observer moves sufficiently fast (sufficiently 
large y), the observer will see a negative density of mass- 
energy! It, perhaps, is only a small step from this unavoid- 

able property of the wormhole’s throat material to the use 
of material in which static observers also see a negative 
energy density, p0c2 < 0. However, some readers may wish 
to minimize the “exoticity” of the material by demanding 

pc2^0 everywhere: a possible constraint. (58) 

[Note added in proof: Don Page has pointed out to us 
that not only must a static, spherical wormhole throat be 
threaded by matter whose mass-energy density as seen by 
some observers is negative (“exotic matter”), but this is 
also true for any traversible, nonspherical, and nonstatic 
wormhole. Roughly speaking, the reason is that bundles of 
light rays (null geodesics) that enter the wormhole at one 
mouth and emerge from the other must have cross-section- 
al areas that initially decrease and then increase. The con- 
version from decreasing to increasing can only be produced 
by gravitational repulsion of matter through which the 
light rays pass, a repulsion that requires negative energy 
density. (A more rigorous statement is this: A roughly 
spherical surface on one side of the wormhole throat, from 
the viewpoint of the other side, is an “outer trapped sur- 
face”—which, by Proposition 9.2.8 of Ref. 22, is possible 
only if the “weak energy condition” is violated, i.e., only if 
some observers near the throat see a negative mass-energy 
density.) ] 

In the remainder of this section we shall ponder the pos- 
sible existence of the exotic material necessary for worm- 
hole construction. Our pondering will lead us to the fore- 
front of current research—and in doing so will necessitate a 
change of style: Rather than present the full details as 
above, we shall only mention briefly the principal issues, 
and for each issue give references to the literature. 

In the 1960s and early 1970s most physicists regarded as 
almost sacred the assertion that no observer should ever be 
able to measure a negative energy density. This assertion 
carries the name “weak energy condition”22; and when 
augmented by additional constraints it is called the “domi- 
nant energy condition” or the “strong energy condition.”22 

These energy conditions, all of which will be violated by 
matter with r>pc2, are key foundations for a number of 
important theorems—e.g., the “positive mass theorem,” 
which says that objects made of matter that satisfies the 
dominant energy condition can never antigravitate (can 
never repel other bodies gravitationally)23; a variety of 
theorems that predict that if one or another of the energy 
conditions is satisfied, then spacetime singularities will be 
created in cosmological situations and in gravitational col- 
lapse24; and the “second law of black hole mechanics,” 
which says that if all stress-energy near a black hole hori- 
zon satisfies the strong energy condition, then the horizon’s 
surface area can never decrease.25 

The discovery, by Hawking,26 that nonrotating black 
holes can evaporate and, correspondingly, that their sur- 
face areas can shrink, in violation of the second law of black 
hole mechanics, forced physicists to face up to the fact that 
quantum fields can violate the energy conditions. Stated 
more precisely, there are quantum states in which the (re- 
normalized) expectation value of the stress-energy tensor 
violates all of the energy conditions.27 One very general 
situation for such violations is the quantum mechanical 
creation of particles. In fact, particle creation always en- 
tails a violation of the energy conditions.28 As an example, 
any static observer just above the horizon of an isolated 
(surrounded-by-vacuum) Schwarzschild black hole will 
see a time-independent, negative expectation value for the 
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energy density.29 This negative energy density is associated 
with the creation of particles near the horizon, particles 
that subsequently will evaporate, and correspondingly 
with a flow of negative energy into the horizon, negative 
energy that causes the horizon to shrink in response to the 
evaporation. 

Another situation where quantum fields can have nega- 
tive energy density, violating the energy conditions, is a 
squeezed state of the electromagnetic field.30 Such a state 
has recently become a practical reality in the laboratory31 

as a result of the nonlinear-optics technique of squeezing, 
i.e., of moving some of the quantum fluctuations of laser 
light out of the cos (f — z/c) part of the beam and into the 
sin co(t — z/c) part. If one squeezes the vacuum32 (i.e., if 
one puts vacuum rather than laser light into the input port 
of a squeezing device), then one gets at the output an elec- 
tromagnetic field with weaker fluctuations and thus less 
energy density than the vacuum at locations where 
cos2 a)(t — z/c) =* 1 and sin2 &>(z — t /c) 41; but with 
greater fluctuations and thus greater energy density than 
the vacuum at locations where cos2 co{t — z/c) 4,1 and 
sin2 co(t — z/c) ~l. Since the vacuum is defined to have 
vanishing energy density, any region with less energy den- 
sity than the vacuum actually has a negative (renormal- 
ized) expectation value for the energy density. Thus a 
“squeezed vacuum state” consists of a traveling electro- 
magnetic wave that oscillates back and forth between nega- 
tive energy density and positive energy density, but has 
positive time-averaged energy density (by contrast with 
the near-horizon region of an evaporating black hole where 
the negative energy density is time independent). 

These examples of violations of the energy conditions 
give warning that one should not blithely assume the im- 
possibility of the exotic material that is required for the 
throat of a traversible wormhole. Another warning comes 
from the fact that a time-independent, radial electric field 
or magnetic field threading the wormhole is right on the 
borderline of being exotic; if its tension were infinitesimally 
larger, for a given energy density, it would satisfy our 
wormhole-building needs. 

It may well be that the fundamental laws of physics for- 
bid exotic material on the macroscopic scales required for 
wormhole building; but the authors know of no way to 
prove so and, in fact, would not be extremely surprised if a 
quantum-field-theoretic example of such material were 
found in the near future. The search for such an example, 
or an impossibility proof, is an interesting challenge. 

Sometimes one sees assertions that the speed with which 
signals should propagate in exotic material is |r/p|1/2 

which exceeds the speed of light, and that, therefore, mac- 
roscopic exotic material is forbidden. However, this is not 
necessarily so. To prove that \r/p\in is the signal speed, 
one needs a detailed theory of the material not just in static 
situations like that of our wormholes but also in dynamical 
situations, and one must study, using such a detailed theo- 
ry, the speed of propagation of signals (group velocity), 
not just that of monochromatic waves (phase velocity). 
Situations in which the group velocity is much more com- 
plicated than simply \r/p\1'2 are very common, e.g., in 
plasma physics.33 For further discussion see, e.g., Ref. 34. 

As a warning that one should not assert too strongly the 
impossibility of exotic matter on macroscopic scales, one 
can look back at the history of physicists’ beliefs about ex- 
treme equations of state. Prior to 1961, it seems to have 
been believed universally that the trace of the stress-energy 

tensor must always be positive, and thus that in a medium 
with isotropic pressure p and mass density p the pressure 
can never exceed one-third the mass-energy density: 
p<,pc2/3. One finds this asserted without proof, e.g., in the 
classic papers of Oppenheimer and colleagues35 (1939) 
and of Wheeler and colleagues36 (19 57) on neutron-star 
equations of state. However, in 1961, ZePdovich37 gave an 
explicit example, in quantum field theory, of a field that 
leads macroscopically to an isotropic equation of state with 
p = pc2, and many experts today believe that matter actual- 
ly behaves in this manner at densities above about 10 times 
nuclear.38 Similarly, the beliefs22 of the 1960s and early 
1970s that matter must always possess positive energy den- 
sity and satisfy |T| <,pc2, even on microscopic length scales, 
have been supplanted more recently by the realization that 
this is not so.27 It may well be that today’s widely held 
prejudices for |r|<yoc2 when averaged over macroscopic 
scales and over time (exotic material) will also fall when 
we better understand the laws of physics. Such better un- 
derstanding (the discovery by Eda of a field that produces 
an anisotropic stress with T>pc2 > 0 along one direction), 
is the key in Sagan’s novel (Box 1) to an understanding of 
the characters’ wormhole travel experiences. 

3. Ways to minimize the use of exotic material 

Since exotic material is so problematic, it behooves us to 
use as little of it as possible in our wormhole solutions. We 
shall quantify the amount of exotic material used by the 
function £"(/•) = (r — pc2) /pc2, and in constructing specif- 
ic wormhole solutions (in the Appendix), we shall rely on 
three different methods to limit the amount used. 

(a) Use exotic material (£>0) throughout the worm- 
hole, but insist that the density of exotic material fall off 
rapidly with radius as one moves away from the throat. 
This is the least pleasing of the three methods. An example 
is b = const, <6 = 0, which has the following stress-energy 
profile: 

p{r) =0, r(r) = io/(8irGc_V), 

p(r) = Vd6irGfc-V), f=oo. (59) 

This solution has the unattractive feature that f is positive 
and huge everywhere, but the exotic material does fall off 
rapidly with radius. 

(b) Use exotic material as the only source of curvature, 
but cut it off completely at some radius Rs:g >0 for all 
r < Rs, and pc2 = r = p = 0 for r>Rs. This method may 
be better than the first, but not so good as the following. 

(c) Relegate the exotic material to a tiny central region 
— lc < l < + lc around the throat, and surround that tiny 

region with normal matter: £> 0 for |/1 < lc; and £<0 for 

\l\>h- 
In the Appendix we exhibit wormhole solutions that 

make use of each of these three methods. 

4. Physical coupling of the wormhole material to a space 
traveler 

It could be extremely uncomfortable for a human travel- 
er to interact with a material that has tensions as large as 
ro~5Xl041 dyn/cm2(10 m/b0)

2 [Eq. (51)]. There are 
two ways to protect the traveler from such interaction: (a) 
The spherical symmetry of the wormhole might be broken 
by passing a vacuum tube with diameter down the 
wormhole, and by using stresses in the tube’s walls to hold 
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the exotic matter out. This seems to have been the method 
used in Sagan’s novel19; but the only way to check its viabil- 
ity is by a study of nonspherical wormhole solutions of the 
Einstein equations—a study well beyond the scope of this 
article, (b) The wormhole material, like neutrinos and 
gravitational waves, might couple only very weakly to the 
human body. Then, despite its huge stress and mass den- 
sity, the material could penetrate the traveler’s body and 
not exert noticeable forces on her. 

G. Stability of the wormhole 

In the absence of a detailed understanding of the exotic 
matter that threads the wormhole’s throat, it is impossible 
to say anything concrete about the stability of the worm- 
hole against small or large perturbations—such as those 
produced by a traversing spacecraft. However, one should 
keep in mind that, even if the wormhole might naturally be 
unstable, an advanced civilization might be able to monitor 
its structure and use feedback forces to prevent instabilities 
from growing. [Note that a wormhole, being something 
that—if stable or stabilized—has a spatial structure that 
persists over time, is quite different from a white hole anti- 
horizon or Kerr tunnel Cauchy horizon (see Sec. I A 4), 
which as seen by any physical observer at its location has 
only a transient existence. The difference is that of a time- 
like entity (wormhole) versus a lightlike entity (antihori- 
zon or Cauchy horizon). This difference may well make it 
far easier for an advanced civilization to stabilize a worm- 
hole than an antihorizon or Cauchy horizon. ] 

H. Assembly of the wormhole 

Even Sagan19 declines to face the problem of how to as- 
semble a traversible wormhole; he leaves that in the hands 
of an ancient, extinct civilization. The assembly might 
seem especially daunting because it entails a change in the 
topology of space; and in classical general relativity such 
changes probably entail spacetime singularities,39 which 
will only be properly understood after gravity has success- 
fully been quantized. On the other hand, there is strong 
reason to believe40 that on length scales of order of the 
Planck-Wheeler length, /P _ w = (G#/c3)1/2 = 1.6 
X10 ~33 cm, quantum-gravity effects dominate and pro- 
duce a foamlike, multiply connected spacetime structure. 
One could imagine an exceedingly advanced civilization 
pulling a wormhole out of this submicroscopic, quantum 
mechanical, spacetime foam and enlarging it and moving 
its openings around the universe until it has assumed the 
size, shape, and location required for some specific inter- 
stellar travel project. Note the emphasis on the word ima- 
gine; we today are far from being able to analyze such a 
process theoretically. Any such analysis will require a reli- 
able understanding of quantum gravity. 

I. Backward time travel using two wormholes 

We may picture our wormhole as connecting two widely 
separated regions of flat spacetime [cf. Fig. 1 (b); the dis- 
tance is large between Earth and Vega the “long way 
around” ]. If the (exterior) distance between the “mouths” 
of the wormhole is long enough and the (interior) worm- 
hole distance is short enough, then the two events repre- 
senting (i) a given traveler entering one mouth and (ii) the 
same traveler leaving the wormhole by the other mouth 
will be seen by observers outside the wormhole as having a 

spacelike separation. In an external inertial reference frame 
that moves at high speed from the first mouth toward the 
second, the exit event (ii) in fact will precede the entry 
event (i). If there were a second wormhole with mouths at 
rest in this high-speed frame, the traveler upon exiting from 
the first wormhole could accelerate up to the speed of the 
second wormhole’s mouths, then plunge down the second 
wormhole, and return through it to her starting point be- 
fore she started [before event (i) ]. 

Thus it would seem that if advanced civilizations can 
build multiple wormhole spacetimes with adjustable rela- 
tive velocities, then such civilizations can use them for 
backward time travel and causality violation. There seems 
to be no a priori reason that would preclude such multiple 
wormholes if single wormholes were constructable. Some 
readers may regard this as indicating that the laws of phys- 
ics will prevent the assembly of even single wormholes. 
Other readers will await a definitive answer from future 
research as to what the laws of physics prevent and what 
they permit. [Note added in proof: Since writing this, we 
have discovered that from a single wormhole an arbitrarily 
advanced civilization can construct a machine for back- 
ward time travel.41] 

IV. CONCLUSION 

The wormhole solutions to Einstein’s equations present- 
ed in this article are not only a pedagogical tool for teaching 
general relativity. Today they are also an intriguing possi- 
bility for actual construction by advanced civilizations. 
However, any hope that they might be constructable must 
rely on the future discovery of an exotic field or quantum 
state of known fields with tension that exceeds energy den- 
sity on macroscopic length scales. We must keep in mind 
that such exotic fields or states might eventually be ruled 
out on fundamental microphysical grounds, and that such 
an exclusion would prevent our wormholes by fiat. More- 
over, even if an exotic field or state were available, several 
other difficulties might prevent construction of real traver- 
sible wormholes: The topology change required for worm- 
hole formation may not be classically allowed, is not quan- 
tum mechanically understood, and might be quantum 
mechanically forbidden. The wormholes might be unstable 
and even unstabilizable. The existing exotic field might in- 
teract only very strongly with ordinary matter—prevent- 
ing human travel because of overbearing field stresses. And 
the backward time travel that appears to be permitted by 
such wormholes might, in some as yet unimagined way, 
prevent their construction. Nevertheless, we do not know 
today enough to either affirm or refute these difficulties, 
and we correspondingly cannot now rule out traversible 
spacetime wormholes. 
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APPENDIX: SPECIFIC WORMHOLE SOLUTIONS 

In this Appendix we present three specific solutions to 
the Einstein equations (17)—(19) for traversible worm- 
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holes. Each of these solutions is designed to satisfy all the 
constraints discussed in Sec. Ill and summarized in Box 3; 
and each uses a different method [from Sec. Ill F 3] of 
trying to limit the amount of exotic matter. 

1. The zero-tidal-force solutions 

A simple class of solutions results when we set <I> = 0 
everywhere—corresponding to precisely zero tidal force as 
seen by stationary observers [cf. Eqs. (49) and (50) ]: 

b = b(r), d> = 0, (Ala) 

p(r) = b'(r)/(8jrGc_V), (Alb) 

r(r) — b(r)/(8vrGc_V), (Ale) 

p(r) — (b — b >)/( 16irGc“V), (Aid) 

*(r) = + r " , 
~k [r/b(r) - 1],/2 

(Ale) 

f(r) = (b-b'r)/\b'r\. (Alf) 

The shape function b(r) that generates these solutions 
must satisfy the wormhole-shaping conditions of Sec. 
Ill C. Two particularly simple examples are 
b(r) = (b0r)1,2 and b(r) = $b0 — ^ b0(b0/r)2. For both of 
these shape functions the wormhole’s material extends all 
the way from the throat out to / = ± oo, and it is every- 
where exotic (r > pc2 > 0 everywhere). Of course, the den- 
sity, tension, and pressure p, r, and p all asymptote toward 
zero as l-> + oo, so that (in the neighborhood of Earth, for 
example) the exotic material will be unmeasurably weak. 

Consider a spaceship traveling radially through the 
wormhole with its propulsion power shut off. Equation 
(43) tells us that, since travelers in the spaceship feel no 
acceleration (since a = 0), the spaceship must travel with 
constant ye*. For the zero-tidal-force solutions (<t> = 0), 
this corresponds to constant y= (1 — v2/c2)~112 and 
hence to constant speed v = dl /dt as measured by static 
observers, 

v = ^ = const for unpowered spaceship. (A2) 

Consider specifically now our first choice, 

b(r) = (b0r),/2 (A3) 

for the wormhole shape function. Plugging into Eqs. (A1) 
we find that this choice requires the exotic material to have 
the following equations of state: 

r/2 = 2p = pc2, p> 0 everywhere. (A4) 

We can integrate Eq. (Ale) for this simple choice of b{r) 
to find the embedding function, z(r): 

z(r) = + 460[(vV/b0 - 1 )3/2/3’+ {yjr/b0 - 1)1/2], 
(A5) 

and we can similarly determine proper distance through 
the wormhole [Eq. (32)]: 

We shall locate our two space stations (cf. Sec. Ill E) at 

large enough radii that the factor (1 — b(r)/r) differs from 
unity by only 1% [in a region that is very nearly flat, cf. 
constraint (40) ]. That is, we take the radial location of the 
two stations to be rx = r2 — 104b0, corresponding to 
/[ = /2=; 104b0. Now we shall proceed to calculate how fast 
a traveler can traverse the entire wormhole from station 1 
at — /, in the lower universe to station 2 at ±l2 in the 
upper universe (cf. Fig. 2). Consider the acceleration and 
tidal-force constraints (44), (49), and (50). We shall at 
first ignore the acceleration at leaving station 1 and the 
deceleration upon arriving at station 2 and instead assume 
that our traveler maintains constant speed v throughout 
her trip. Then the acceleration constraint (44) is trivially 
satisfied since <t> = 0 and y remains constant for the trip. 
The radial tidal acceleration (49) is also identically zero 
since <t> = 0 everywhere. We are thus left with constraint 
(50) limiting the tidal forces associated with motion 
through the tunnel: 

< 1 

(1010 cm)2 
(A7) 

We substitute our particular solution to obtain 

4(-Y(V),/2S-^ (A8) 
Ar'Kc) (10 ° cm)2 

This constraint is most severe for the smallest radius r= b0 

(at the throat) 

yv/cS2x\0~7(b0/lO m). (A9) 

In the limit that the motion is nonrelativistic (v/ 
c4, l,y~ 1) we obtain: 

yS60m/s(bo/10 m). (A10) 

Correspondingly, the total time lapse for travel from sta- 
tion 1 to station 2 [Eqs. (41)] is the same (since yzz 1, 
$ = 0) for clocks ticking in the stations and on board the 
spaceship: 

Ar^At^f' —=2X104^ 
J - V V 

=;3X103 s(n/60 m/s)-'. (All) 

Thus the total trip time through such a tunnel can be made 
a comfortable hour with maximum tidal force of 1 Earth 
gravity at the midpoint of the journey. 

Because the velocity of travel is so small [Eq. (A 10) ], 
acceleration at the beginning of the trip and deceleration at 
the end have no significant effect on the above conditions. 

2. A solution with a finite radial cutoff of the stress- 
energy 

We turn next to solutions that confine the exotic materi- 
al to a finite region around the wormhole. To accomplish 
this we shall use a simple zero-tidal-force solution interior 
to a surface radius Rs and join it smoothly near there to an 
exterior Schwarzschild solution. We choose 

b = b0(r/b0)
1 v, with 0<rj = const < 1, 

= (J)„ = const, for b0<r<Rs. (A12) 

Given this form for the interior wormhole functions, b(r) 
and <!>(/•), we obtain from Eqs. (17)—(19) the stress-ener- 
gy profile, 

p(r) = (1 — 7])b(.r)/(^irGc~2ri), r(r) = pc2/(l - 77), 

p(r) = t]pc2/2{\ — T)). (A13) 
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Correspondingly, the exoticity, £(r) [Eq. (52) ], is a con- 
stant, 

£(.r) = 77/O — 77). (A14) 

We note that this “interior” solution satisfies all of the 
wormhole constraints: There is a throat at r = b0; there are 
no horizons (since 4> = const everywhere); and the em- 
bedding diagram is outward flaring for 7/ > 0. Indeed, this 
somewhat more general solution reduces to our first specif- 
ic choice in Sec. 1 of the Appendix above when we set 77 = ± 
and 4>0 = 0. For simplicity, we shall henceforth restrict our 
analysis to the case 77 = 

Recall that the Einstein field equations and the law of 
radial force balance permit discontinuities in p and p, but 
require r to be continuous [paragraph following Eq. 
(22) ]. Thus, in order to bring r to zero near the surface 
radius Rs, we must join the above interior solution onto a 
transition layer at Rs, which, in turn, we join to external 
vacuum at Rs + AR. A simple choice for this transition 
layer is 

p(r) = [r(Rs)/c
2](Rs/AR), (A15a) 

r(r) =T(Rs) — [T(R5)/AR ](r —Rs), 

for Rs < r<Rs + AR (A15b) 

(constant density and linear decrease of r to zero). The 
Einstein equations (14), (15), and (19) then enforce, 

Hr) = f 7TGC-
4
^ - R3

S)[RST(Rs)/AR ] + HRS), 

(A15c) 

$'(/•) = [ -STrGc~4rri + b(r)]/[2r(r-b(r))], 

(A15d) 

p(r) = (r/2) [(pc2 — r)4>' — r']—r (A15e) 

We shall choose the thickness of the transition layer to be 
AR = b(Rs) for simplicity, and shall assume that it lies far 
from the throat, Rs > b0, so that AR = b(Rs) 4RS [cf. Eq. 
(A 12) with 77 = 1]. Then Eqs. (A15) imply that, aside 
from fractional errors of order AR /Rs < 1, b, <f>', and r 
change linearly through the layer, while p and p are con- 
stant: 

Hr) =b(Rs) + [{r-Rs)/AR ]b{Rs), 

so B = b{Rs + AR) = 2b(Rs), (A16a) 

«*»'(/•) = [{r-Rs)/AR](B/2R2
s), 

so <I>'(RS + AR) —B/2R |, (A16b) 

r(r) = T(Rs) - [(r-Rs)/AR ]T-(R5), 

so T(RS + AR) = 0, (A16c) 

p(r) = (RS/2AR)T(Rs), (A16d) 

p(r) = (Rs/AR)[r(Rs)/c2]. (A16e) 

Equations (A16a,b) permit a match at r = Rs -f AR onto 
a vacuum Schwarzschild solution [Eqs. (21), (22)]. 
Equations (A16c,d) show that the transition layer is using 
an enormous “Roman arch” pressure to counterbalance 
the radial gradient of r, as it brings r to zero. By compari- 
son with these two huge, counterbalancing internal forces, 
the gravitational force on the layer is negligible. Equations 
(A16c,d,e) show that the equations of state of the layer’s 
material are/? = p/2, and { p independent of r, as r varies}. 
Our choice for/? in the layer [Eq. (A15a)] was determined 
by the desire that the layer’s material be nonexotic. 

We shall locate the terminal space stations at the edge of 

the Schwarzschild region (r, = r2 = Rs + AR) and shall 
require that the traveler be able to stop there without being 
gravitationally crushed. The accelerative constraint of Eq. 
(44) is then the most severe [the tidal constraints of Eqs. 
(49) and (50) are smaller]: 

|d>'(R5 + AR)\ = B/2R|<(9.2Xl015 m)-1. (A17) 

Here, we have used B/2 = AR<^RS and Eq. (A16b) for 
<t>'. By virtue of Eq. (A 12) with 77 = \, this corresponds to 

Rs > 1X10" m(V10 m)1/3~0.6 a.u.(V10m),/3
f 

(A18) 

i.e., we must make the wormhole’s surface radius Rs very 
large in order to keep small the acceleration of gravity on 
the terminal space stations. This large value of Rs implies, 
through Eqs. (A12) and (A16a), that 

B=b(.Rs + AR) =2b(.Rs)^l.9xl06 m(V10 m)2/3. 
(A19) 

When the exterior Schwarzschild solution, 

b(r) = B and <I>(r) = \ ln( 1 —B/r) 

for r>Rs + AR, (A20) 

is matched onto the layer (A16), we find, aside from frac- 
tional corrections of order AR /Rs < 1, that <I> in the worm- 
hole’s interior has the value 

4>0 = i In(1 -B/RS)~B/2RS. (A21) 

This shows that e2®" = (1 — B /Rs) differs from unity by 
only a very small amount so that the proper time measured 
by static observers is nearly the same as coordinate time t 
throughout the wormhole. Correspondingly, the analysis 
of travel through the wormhole as given in Sec. IV A re- 
mains valid here; and, in particular, travel with comfort 
requires v S (60 m/s) (bn/l0 m) in the throat. 

In Sec. 1 of the Appendix we permitted v to remain this 
small throughout the journey. Now, however, the stations 
are ~ 106 times farther from the throat (the great distance 
being forced by the demand that the acceleration of gravity 
be bearable on the stations); and, correspondingly, we 
must ask our traveler to hasten her journey by using a vari- 
able velocity v. Her varying velocity is constrained by tidal 
gravity [the “motional constraint” of Eq. (50)], 

f (v\2(rb'-b\ 1 
2T-2U V r / (108 m)2 ’ 

(A22) 

which reduces [by virtue of Eq. (A 12) with 77 = \, and 
assuming y~ 1 ] to 

i.e., vS(60 m/s) 
\b0J \ 10 m/ 

(A23) 

Her velocity is also constrained by the demand that she not 
feel too large an acceleration [Eq. (44) with 1, con- 
stant, and v~dl /dt]: 

dv d2i 

dt dt2 
< g (A24) 

For concreteness, ask her to accelerate away from the low- 
er station at d2l/dt1 = + gs until she is halfway to the 
throat, then decelerate at d2l/dt2= —g# until she 
comes to rest at the throat, then accelerate away from the 
throat at d21/dt2 = + until she is halfway to the up- 
per station, then finally decelerate at d21/dt2 = — ga un- 
til she comes to rest at the upper station. With this travel 
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scheme her maximum velocity will be 

t\nax = (iSe-Ks)
1/2 = 7Xl05 m/s(/Js/10n m)l/2, 

(A25) 

which gives 7— 1 (as assumed in our discussion) so long as 

RS4.1016 m. (A26) 

The velocity profile, v (/•) associated with this scheme easily 
satisfies the tidal constraint (A23) at all radii; and it gives a 
total travel time from station to station, 

Arr = Ar= (32/?s/ge )1/2~(7 days) (/{S/10
U m)1/2. 

(A27) 

Thus this wormhole is very nicely suited to interstellar 
travel. 

3. Solutions with exotic matter limited to the throat 
vicinity 

If we allow ourselves to use matter with negative energy 
density as measured by static observers, pc2 < 0, we can 
confine the exotic matter to an arbitrarily small throat re- 
gion and thereby obtain an absurdly benign wormhole. An 
example is 

b{r)=b0[\-(r-b0)/a0]2, <I>(r)=0 

for b0<r<b0 + a0, (A28a) 

b = <I> = 0 for r>b0 + aQ. (A28b) 

We may use the Einstein equations (17)—(19) to tell us 
what kind of material would be necessary to produce this 
wormhole: At b0 < r < b0 + a0 the material must have 

p{r) = [( - b0/a0)/(4wGc~2r2)][l - (r - b0)/a0] <0, 

(A28c) 

r(r) =h0[l — (r —h0)/a0]
2/(87rGc_V), (A28d) 

p(r) =%[r(r) -p(r)c2], (A28e) 

while at r^b0 + a0 spacetime is flat [Eq. (A28b)] and 
empty, p = r — p = 0. Because <t> = 0 everywhere, if a 
traveler moves through the wormhole at constant speed v, 
accelerative forces are nonexistent and tidal forces are 
bearable so long as the motional constraint of Eq. (50) is 
satisfied: 

f(vV(b'r-b\ K_J_ 

2Ac) V r / (108 m)2 

This reduces, by virtue of Eqs. (A28), to 

(v/c)2Sa0bo/( 108 m)2 at b0<r<b0 + a0. 

The total traversal time, so long as v/c4> 1, is 

ATT~At=*ira/vk,l secVVV 

(A29) 

(A30) 

(A31) 

Whatever may be the wormhole’s circumference 2irb0, by 
choosing a0 arbitrarily small we confine the exotic matter 
to a region of arbitrarily small thickness A/ = ira0 and vol- 
ume 4TT

2
Z> QUO, and we ensure that it can be traversed with 

comfort arbitrarily quickly. 
Unfortunately, when pc2 is constrained to be positive, 

the exotic matter cannot be confined to an arbitrarily small 
region and still yield a significant flaring outward of the 
embedding: A strategy to obtain a wormhole with maximal 
confinement of the exotic matter would be as follows. First 
we should allow the exotic matter to dominate the central 
region of the wormhole around the throat, and we should 
use a sufficient amount of this material to achieve a sizable 

flaring out in the geometry’s embedding function z(r), as 
quickly as possible in radius. This exotic region we should 
then join onto a region of near-exotic matter (matter with a 
stress-energy tensor that obeys all of the energy conditions 
but comes close to breaking them, so that we can go far out 
in radius with little or no flaring back in). Finally, at a large 
enough radius Rs for Schwarzschild gravitational forces to 
be comfortable, we should use a surface layer of thickness 
AR to match onto the vacuum Schwarzschild exterior solu- 
tion. Unfortunately, it seems impossible to achieve sizable 
flaring outward on small scales (less than the throat size 
b0) without resorting to negative p. To see this, recall the 
embedding slope from Eq. (27): 

If at some radius, rc = b0 + Ar, this slope is to reach 1 
(which corresponds to 45° from flat in the embedding sur- 
face, a significant flaring from the throat), then we must 
have 

(b0 + Ar)/[b(b0 + Ar)] =2. (A32) 

If it were possible to choose Ar/b0-41, then we could Tay- 
lor expand in Ar/b0 to find: 

b0 + A r _ 1 + A r/b0 

b0 + Arb'(b0) ~ 1 + (Ar/b0)b' 

= 1+ —(1-6')^2. (A33) 
bo 

This, however, is clearly impossible without choosing b' 
negative and hence p negative [Eq. (14)]. If we hold to 
solutions that keep p positive, we must allow the exotic 
matter to occupy a macroscopically large region of space 
(A rZb0). 

As an example of such a wormhole we choose our interi- 
or solution in and around the throat to have the same exotic 
form as in Secs. A and B of the Appendix above: 
b(r) = (b0r)U2, = $0 for b0SrSrc. We wish to join 
this onto nonexotic matter at a radius rc. It turns out that 
both the size of the wormhole and the resultant traversal 
time are dominated by the embedding slope at rc; and, cor- 
respondingly, usability dictates that the slope be chosen 
rather small. With the prescience of hindsight, we pick 
dz/dr(rc) = ^ which gives rc = 104h„. For rcSrSRs we 
choose b(r) = r/100, = 4>0 with accompanying stress- 
energy T = pc2,p — 0. Finally, at Rs we drop r to zero, as in 
Sec. B of the Appendix above, in a surface layer of thickness 
LR = b{Rs) and mass density p = RST{RS)/ARc2. This 
creates a gradient in <1> at the outer edge of the layer, of size 

<P' = B/2R
2

S = l/100/(s, (A34) 

so that B = Rs/50 in the external Schwarzschild region. If, 
as in Sec. B of the Appendix, we locate the terminal space 
stations just outside the transition layer, then the demand 
that the gravitational acceleration on the stations be bear- 
able [Eq. (40) ] implies, independently of b0, 

RSZ9.2X1013 m~600 a.u. (A35) 

Thus the surface radius must be quite large to keep life in 
the stations comfortable. It is this hindsight that has 
prompted us to require rc so large. We may now write down 
the complete wormhole solution: 
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*(/•) = < (A36a) 

(b0r)in, at b0<r<,rc = I04b0, 

xfor, at rcKr<Rss*9-2X 1013 m, 

^[(r3-^3)/^2] +tfs/100, at Rs<r<Rs + AR, AR = RS/100, 

B=RS/50, at + AR<r, 

f<I>0ss — 0.01, at b0<r<,Rs + AR, 

1 iln(l —B/r), at Rs + AR^r, 

g = 1 and pc2 = r/2 = Ip for bQ<r<rc, 

g = 0 and pc2 = T, p = 0 for rc<r</?s, 

transit, surf, layer with p = RST(RS)/ARC
2 for Rs<rfRs + AR, 

vacuum where pc2 = r = /? = 0 for Rs + AR<,r. 

(A36b) 

(A36c) 

It is straightforward to verify that, if this wormhole is 
traversed in the same manner as that of Sec. B of the Ap- 
pendix (accelerate at g9 from the lower station, decelerate 
at gm into the throat, accelerate atge from the throat, and 
decelerate at ga to the upper station), then the trip will be 
fully comfortable and will require a total time of about 200 
days. 

[ Note added in proof: For yet another solution with exot- 
ic matter confined to the immediate vicinity of the throat— 
one whose exoticity g < 0 is produced by the Casimir effect, 
see Ref. 41.] 
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PROBLEM: METHOD OF ELECTROSTATIC IMAGES—TREATING PLANE 
GEOMETRY AS A SPECIAL CASE OF SPHERICAL GEOMETRY 

A conducting sphere of radius a, assumed to be at zero 
potential, is in a medium of infinite extent. A point charge 
q, placed at a point P inside the medium, produces an image 
q' at a point P' inside the sphere. Let d = CP and b = CP', 
where C is the center of the sphere. It is known that (i) P' 

lies on the line joining C and P, (ii) q' = — (a/d)q, and 
(iii) b = a2/d. Use these results to find the magnitude and 
location of the image charge produced by q when it is 
placed at a distance / from a grounded, semi-infinite con- 
ducting region, x <0. (Solution is on p. 471). 
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